第1期 | GPTSecurity周报

释放双眼,带上耳机,听听看~!

GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练 Transformer(GPT)、人工智能生成内容(AIGC)以及大型语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好的知悉近一周的贡献内容,现总结如下如下。
 

                                                                                    Security Papers
1. 行业新闻

 

  • 安全大模型进入爆发期!谷歌云已接入全线安全产品|RSAC 2023

    https://mp.weixin.qq.com/s/5Aywrqk7B6YCiLRbojNCuQ

2. 软件供应链安全

 

1)论文

  • Large Language Models are Zero-Shot Fuzzers: Fuzzing Deep-Learning Libraries via Large Language Models

    https://arxiv.org/pdf/2212.14834.pdf

  • SecurityEval Dataset: Mining Vulnerability Examples to Evaluate Machine Learning-Based Code Generation Techniques

    https://dl.acm.org/doi/abs/10.1145/3549035.3561184

  • LLMSecEval: A Dataset of Natural Language Prompts for Security Evaluation

    https://arxiv.org/pdf/2303.09384.pdf

  • DiverseVul: A New Vulnerable Source Code Dataset for Deep Learning Based Vulnerability Detection

    https://arxiv.org/pdf/2304.00409.pdf

2)博客

  • 我是如何用GPT自动化生成Nuclei的POC

    https://mp.weixin.qq.com/s/Z8cTUItmbwuWbRTAU_Y3pg

 

3. ChatGPT自身安全

 

1)论文

  • GPT-4 Technical Report 

    https://arxiv.org/abs/2303.08774 

  • Ignore Previous Prompt: Attack Techniques For Language Models 

    https://arxiv.org/abs/2211.09527 

  • More than you’ve asked for: A Comprehensive Analysis of Novel Prompt Injection Threats to Application-Integrated Large Language Models

    https://arxiv.org/abs/2302.12173

  • Exploiting Programmatic Behavior of LLMs: Dual-Use Through Standard Security Attacks 

    https://arxiv.org/abs/2302.05733 

  • RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language Models

    https://arxiv.org/abs/2009.11462

  • Understanding the Capabilities, Limitations, and Societal Impact of Large Language Models

    https://arxiv.org/abs/2102.02503

  • Taxonomy of Risks posed by Language Models

    https://dl.acm.org/doi/10.1145/3531146.3533088 

  • Survey of Hallucination in Natural Language Generation

    https://arxiv.org/abs/2202.03629 

  • Red Teaming Language Models to Reduce Harms: Methods, Scaling Behaviors, and Lessons Learned

    https://arxiv.org/abs/2209.07858 

  • Pop Quiz! Can a Large Language Model Help With Reverse Engineering 

    https://arxiv.org/abs/2202.01142

  • Evaluating Large Language Models Trained on Code

    https://arxiv.org/abs/2107.03374 

  • Is GitHub’s Copilot as Bad as Humans at Introducing Vulnerabilities in Code? 

    https://arxiv.org/abs/2204.04741

  • Using Large Language Models to Enhance Programming Error Messages 

    https://arxiv.org/abs/2210.11630 

  • Controlling Large Language Models to Generate Secure and Vulnerable Code

    https://arxiv.org/abs/2302.05319 

  • Systematically Finding Security Vulnerabilities in Black-Box Code Generation Models 

    https://arxiv.org/abs/2302.04012

  • SecurityEval dataset: mining vulnerability examples to evaluate machine learning-based code generation techniques 

    https://dl.acm.org/doi/abs/10.1145/3549035.3561184 

  • Assessing the quality of GitHub copilot’s code generation 

    https://dl.acm.org/doi/abs/10.1145/3558489.3559072 

  • Can we generate shellcodes via natural language? An empirical study 

    https://link.springer.com/article/10.1007/s10515-022-00331-3

2)博客

  • 用ChatGPT来生成编码器与配套WebShell 

    https://mp.weixin.qq.com/s/I9IhkZZ3YrxblWIxWMXAWA 

  • 使用ChatGPT来生成钓鱼邮件和钓鱼网站

    https://www.richardosgood.com/posts/using-openai-chat-for-phishing/ 

  • Chatting Our Way Into Creating a Polymorphic Malware 

    https://www.cyberark.com/resources/threat-research-blog/chatting-our-way-into-creating-a-polymorphic-malware 

  • Hacking Humans with AI as a Service 

    https://media.defcon.org/DEF%20CON%2029/DEF%20CON%2029%20presentations/Eugene%20Lim%20Glenice%20Tan%20Tan%20Kee%20Hock%20-%20Hacking%20Humans%20with%20AI%20as%20a%20Service.pdf 

  • 内建虚拟机实现ChatGPT的越狱

    https://www.engraved.blog/building-a-virtual-machine-inside/ 

  • ChatGPT can boost your Threat Modeling skills 

    https://infosecwriteups.com/chatgpt-can-boost-your-threat-modeling-skills-ab82149d0140

  • 干货分享!Langchain框架Prompt Injection在野0day漏洞分析

    https://mp.weixin.qq.com/s/wFJ8TPBiS74RzjeNk7lRsw

  • LLM中的安全隐患-以VirusTotal Code Insight中的提示注入为例

    https://mp.weixin.qq.com/s/U2yPGOmzlvlF6WeNd7B7ww

 

4. 威胁检测

 

  • ChatGPT赋能的威胁分析——使用ChatGPT为每个npm, PyPI包检查安全问题,包括信息渗透、SQL注入漏洞、凭证泄露、提权、后门、恶意安装、预设指令污染等威胁

    https://socket.dev/blog/introducing-socket-ai-chatgpt-powered-threat-analysis

 

                                                                                 Security Tools
1. PentestGPT
简介:一款基于GPT的自动化渗透测试工具。它建立在 ChatGPT 之上,以交互方式运行,以指导渗透测试人员进行整体进度和具体操作。PentestGPT能够解决简单到中等的 HackTheBox 机器和其他 CTF 挑战。与Auto-GPT 的相比,它有以下几个差异点:
1)在安全测试中使用[Auto-GPT](https://github.com/Torantulino/Auto-GPT)很好,但它并未针对与安全相关的任务进行优化。
2)PentestGPT专为通过自定义会话交互进行渗透测试而设计。
3)目前,PentestGPT不依赖于搜索引擎。
链接:[https://github.com/GreyDGL/PentestGPT]
2. Audit GPT
简介:一款针对区块链安全审计任务进行GPT微调的智能化工具
链接:https://github.com/fuzzland/audit_gpt
3. IATelligence
简介:IATelligence 是一个 Python 脚本,它将提取 PE 文件的 IAT 并请求 GPT 以获取有关 API 和 ATT&CK 矩阵相关的更多信息
链接:https://github.com/fr0gger/IATelligence

给TA买糖
共{{data.count}}人
人已赞赏
行业热点

欢迎来到 GPTSecurity!共建知识库

2023-10-19 9:57:56

行业热点

云起无垠参编中国信通院《软件供应链安全能力中心建设指南》正式发布

2023-10-19 9:58:15

0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
个人中心
购物车
优惠劵
今日签到
有新私信 私信列表
搜索